Coexpression and activation of TRPV1 suppress the activity of the KCNQ2/3 channel

نویسندگان

  • Xu-Feng Zhang
  • Ping Han
  • Torben R. Neelands
  • Steve McGaraughty
  • Prisca Honore
  • Carol S. Surowy
  • Di Zhang
چکیده

Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel expressed predominantly in peripheral nociceptors. By detecting and integrating diverse noxious thermal and chemical stimuli, and as a result of its sensitization by inflammatory mediators, the TRPV1 receptor plays a key role in inflammation-induced pain. Activation of TRPV1 leads to a cascade of pro-nociceptive mechanisms, many of which still remain to be identified. Here, we report a novel effect of TRPV1 on the activity of the potassium channel KCNQ2/3, a negative regulator of neuronal excitability. Using ion influx assays, we revealed that TRPV1 activation can abolish KCNQ2/3 activity, but not vice versa, in human embryonic kidney (HEK)293 cells. Electrophysiological studies showed that coexpression of TRPV1 caused a 7.5-mV depolarizing shift in the voltage dependence of KCNQ2/3 activation compared with control expressing KCNQ2/3 alone. Furthermore, activation of TRPV1 by capsaicin led to a 54% reduction of KCNQ2/3-mediated current amplitude and attenuation of KCNQ2/3 activation. The inhibitory effect of TRPV1 appears to depend on Ca(2+) influx through the activated channel followed by Ca(2+)-sensitive depletion of phosphatidylinositol 4,5-bisphosphate and activation of protein phosphatase calcineurin. We also identified physical interactions between TRPV1 and KCNQ2/3 coexpressed in HEK293 cells and in rat dorsal root ganglia neurons. Mutation studies established that this interaction is mediated predominantly by the membrane-spanning regions of the respective proteins and correlates with the shift of KCNQ2/3 activation. Collectively, these data reveal that TRPV1 activation may deprive neurons from inhibitory control mediated by KCNQ2/3. Such neurons may thus have a lower threshold for activation, which may indirectly facilitate TRPV1 in integrating multiple noxious signals and/or in the establishment or maintenance of chronic pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between Cannabinoid Compounds and Capsazepine in Protection against Acute Pentylenetetrazole-induced Seizure in Mice

The pharmacological interaction between cannabinoidergic system and vanilloid type 1 (TRPV1) channels has been investigated in various conditions such as pain and anxiety. In some brain structure including hippocampus, CB1 and TRPV1 receptors coexist and their activation produces opposite effect on excitability of neurons. In this study, we tested the hypothesis that TRPV1 channel is involved i...

متن کامل

N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator.

KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) are voltage-gated K(+) channel subunits that underlie the neuronal M current. In humans, mutations in these genes lead to a rare form of neonatal epilepsy (Biervert et al., 1998; Singh et al., 1998), suggesting that KCNQ2/Q3 channels may be attractive targets for novel antiepileptic drugs. In the present study, we have identified the compound N-(6-chloro-pyridin-...

متن کامل

Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1.

The voltage-gated KCNQ2/3 and KCNQ3/5 K(+) channels regulate neuronal excitability. We recently showed that KCNQ2/3 and KCNQ3/5 channels are regulated by the ubiquitin ligase Nedd4-2. Serum- and glucocorticoid-regulated kinase-1 (SGK-1) plays an important role in regulation of epithelial ion transport. SGK-1 phosphorylation of Nedd4-2 decreases the ability of Nedd4-2 to ubiquitinate the epithel...

متن کامل

Activity-Dependent Transcriptional Regulation of M-Type (Kv7) K+ Channels by AKAP79/150-Mediated NFAT Actions

M-type K(+) channels, encoded by KCNQ2-KCNQ5 genes, play key roles in regulation of neuronal excitability; however, less is known about the mechanisms controlling their transcriptional expression. Here, we discovered a mechanism regulating KCNQ2/3 transcriptional expression by neuronal activity in rodent neurons, involving activation of calcineurin and nuclear factor of activated T cell (NFAT) ...

متن کامل

Mechanisms Underlying Modulation of Neuronal KCNQ2/KCNQ3 Potassium Channels by Extracellular Protons

Changes in extracellular pH occur during both physiological neuronal activity and pathological conditions such as epilepsy and stroke. Such pH changes are known to exert profound effects on neuronal activity and survival. Heteromeric KCNQ2/3 potassium channels constitute a potential target for modulation by H+ ions as they are expressed widely within the CNS and have been proposed to underlie t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2011